

Mark Scheme (Results)

June 2011

GCE Mechanics M3 (6679) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028443
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Mechanics M3 6679 Mark Scheme

Wark Scheme				
Question Number	Scheme	Marks		
1. (a)	$ \begin{array}{cccc} & & & & & & \ddot{x} \\ & & & & & & & \ddot{x} \\ O & & & & & & & & & & & \\ O & & & & & & & & & & \\ O & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & \\ O & & & & & & & & & & \\ O & & & & & & & & & \\ O & & & & & & & & & \\ O & & & & & & & & & \\ O & & & & & & & & & \\ O & & & & & & & & \\ O & & & & & & & & \\ O & & & & & & & \\ O & & & & & & & \\ O & & & & & & & \\ O & & & & & & & \\ O & & & & \\ O & & & & & \\ O & & \\ O & & \\ O & & \\ O & & & \\ O & & & \\ O & & \\ O & & &$			
	$0.5v \frac{dv}{dx} = -0.375x^2$ $\frac{1}{2}v^2 = -0.25x^3 + c$	M1 M1 A1		
	$t = 0, v = 2, x = 8$ $\frac{1}{2} \times 2^{2} = -0.25 \times 8^{3} + c$ $c = 130$			
	$\therefore v^2 = -\frac{1}{2}x^3 + 260 \qquad *$	A1	(4)	
(b)	$v = 5$ $x^3 = 520 - 50$ $x = 7.77$	M1 A1	(2) 6	

	advanci	ng learning, changing liv
Question Number	Scheme	Marks
2.	$V = \pi \int_0^3 (9 - x^2)^2 dx = \pi \int_0^3 (81 - 18x^2 + x^4) dx$	<u>M</u> 1
	$= \pi \left[81x - 6x^3 + \frac{x^5}{5} \right]_0^3 = \frac{648}{5}\pi$ OR:	M1 A1
	$\int_0^3 \pi (9 - x^2)^2 x dx \qquad \qquad \pi \int_0^3 (81x - 18x^3 + x^5) dx$	
	$= \frac{\pi}{6} \left[-\left(9 - x^2\right)^3 \right]_0^3 = \pi \left[\frac{81}{2} x^2 - \frac{9}{2} x^4 + \frac{1}{6} x^6 \right]_0^3$	M1 A1
	$= \frac{\pi}{6} \left[0 + (9)^3 \right]$ $= \pi \left[\frac{81}{2} \times 3^2 - \frac{9}{2} \times 3^4 + \frac{1}{6} \times 3^6 \right]$	M1
	$\begin{bmatrix} 2 & 2 & 2 & 6 & 1 \\ 2 & 2 & 2 & 6 & 1 \end{bmatrix}$ $= \frac{243}{2}\pi$ $= \frac{243}{2}\pi$	A1
	$\overline{x} = \frac{\frac{243}{2}}{\frac{648}{5}} = \frac{15}{16}$ (accept 0.94)	M1 A1
	5	(9) 9
3.	2	
(a)	Mass ratio $\pi (3l)^2 \times 5l\rho \frac{2}{3}\pi (3l)^3 \times 2\rho 81\pi l^3 \rho$	
	Dist. from O $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1
		B1
	Moments equation:	
	$5 \times \frac{5}{2}l - 4 \times \frac{9}{8}l = 9\overline{x}$	M1 A1 ft
	$\overline{x} = \frac{8}{9}l$	A1
		(5)

		advancing learning, changing li
Question Number	Scheme	Marks
(b)	$GX = 5l - \frac{8}{9}l = \frac{37}{9}l$ $\tan \theta^{\circ} = \frac{3l}{37} = \frac{27}{37}$ $\theta^{\circ} = 36.1^{\circ} \text{ accept } 36^{\circ}, \ 0.63 \text{ or } 0.630 \text{ rad or better}$	B1ft M1 A1 ft A1 (4) 9

	advancing	learning, changing liv
Question Number	Scheme	Marks
4. (a)	A A A A C B C B C B C B C A B C B C B C B C C B C C B C C	B1 M1 A1 M1 A1=A1
	$T_A = \frac{5}{7}m(3a\omega^2 + g) $ *	A1 (8)
(b)	$T_b = \sqrt{2} \left(\frac{4}{5} T_a - mg \right)$ $= \sqrt{2} \left(\frac{4}{7} m \left(3a\omega^2 + g \right) - mg \right)$ $= \frac{3\sqrt{2}}{7} m \left(4a\omega^2 - g \right) \text{oe}$	M1 A1 (2)

Question	advancing	learning, chan	iging ii
Number	Scheme	Marks	
(c)	$T_b \geqslant 0 \Rightarrow 4a\omega^2 \geqslant g$	M1	
	$\omega^2 \geqslant \frac{g}{\cdot}$		
	4a		
	$\omega^2 \geqslant \frac{g}{4a}$ $\omega \geqslant \frac{1}{2} \sqrt{\frac{g}{a}} *$	A1	
	(Allow strict inequalities in (c).)		
			(2)
			12
5. (a)			
(a)	$rac{R}{\Lambda}$		
	$\frac{7}{6}l$		
	$O \xrightarrow{T} \stackrel{T}{\longrightarrow} F$		
	$\stackrel{ullet}{m}g$		
	$T = \frac{3mg}{l} \left(\frac{1}{6}l\right) = \frac{1}{2}mg$	B1	
	$R(\uparrow) R = mg$ $R(\rightarrow) F = T = \frac{1}{2}mg$	M 1	
	$F\leqslant \mu R$		
	$\frac{1}{2}mg \leqslant \mu mg$ $\mu \geqslant \frac{1}{2} *$	M 1	
	1 .		
	$\mu \geqslant \frac{\pi}{2}$	A1	
(b)			(4)
(b)	$1 3m\sigma \left(1\right)^2 3m\sigma l$		
	E.P.E. lost = $\frac{1}{2} \times \frac{3mg}{l} \left(\frac{1}{2}l\right)^2 = \frac{3mgl}{8}$	B1	
	Work done by friction $=\frac{1}{2}mg\left(\frac{l}{2}\right)$	B1	
		ы	
	$\frac{3mgl}{8} = \frac{1}{2}mv^2 + \frac{1}{2}mg\left(\frac{l}{2}\right)$	M1 A1ft	
	$v^2 = \frac{8^{\nu}}{4}$		
	$v^{2} = \frac{gl}{4}$ $v = \frac{1}{2}\sqrt{gl}$		
	2 ***	A1	
			(5)
		Ì	(5)

	advancing	learning, changing	, liv
Question Number	Scheme	Marks	
(c)	$\frac{3mgl}{8} = \frac{1}{2}mgx$ $x = \frac{3l}{4}$	M1 A1 ft A1 (3)
		12	2
6.			
(a)	$V \leftarrow B$ $mg + T_B$ $A \uparrow_{3} \sqrt{(ag)}$		
	Energy to B: $ \frac{1}{2}m(3\sqrt{ag})^{2} - \frac{1}{2} \times mV^{2} = mag $ $ 9ag - V^{2} = 2ag $ $ V^{2} = 7ag $ NH 2 clong radius at B:	–M1 A1	
	NL2 along radius at B: $T_B + mg = m\frac{V^2}{a}$ $T_B + mg = 7mg$ $T_B = 6mg$	[−] M1 A1	
	$T_B > 0 \Rightarrow \text{ particle reaches } B$	A1 (6)

	dovancing	learning, char	iging ti
Question Number	Scheme	Marks	
(b)	Energy to C: $\frac{1}{2} \times mU^2 - \frac{1}{2}m(3\sqrt{ag})^2 = mag$	M1	
	$U^2 = 2ag + 9ag$ $U = \sqrt{11ga}$	A1	(2)
(c)			
	Energy from C to rest: $\frac{1}{2} \times m \times \left(\frac{5}{12} \sqrt{11ag}\right)^2 = mga(1 - \cos\theta)$ $\frac{25}{144} \times 11ag = 2ga(1 - \cos\theta)$ $\cos\theta = \frac{1}{2} \left(2 - \frac{25 \times 11}{144}\right)$ $\theta = 87.4$ $\theta = 87^{\circ} \text{ (or 1.5 rad) or better}$	M1 A1 M1	(4) 12

	duvalicing	learning, chan	ging ii
Question Number	Scheme	Marks	
7.			
	$A \xrightarrow{T_a} A \xrightarrow{T_b} B$ $(1 \text{ m}) O \xrightarrow{x} (1-x)$		
(a)	Total extn. = 0.6 $T_b = \frac{\lambda \times \text{ext}}{l} = \frac{2(0.3 - x)}{0.7} = \frac{2}{7}(3 - 10x) *$	M1 A1	(2)
(b)	$T_a = \frac{2(x+0.3)}{0.7} \left(=\frac{2}{7}(10x+3)\right)$	B1	
(a)	$T_b - T_a = 0.5\ddot{x}$		(1)
(c)	$\begin{vmatrix} T_b - T_a - 0.5x \\ \frac{2}{7}(3 - 10x) - \frac{2}{7}(10x + 3) = 0.5\ddot{x} \\ 2 \times \left(-\frac{20x}{7} \right) = 0.5\ddot{x} \end{vmatrix}$	M 1 A1 ft	
	$\ddot{x} = -\frac{40}{7 \times 0.5} x$ (:. S.H.M.)	M1 A1	
	Period = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{7 \times 0.5}{40}} = 2\pi \sqrt{\frac{7}{80}}$ *	M1 A1	(6)
(d)	$v_{\text{max}} = a\omega = 0.2\sqrt{\frac{80}{7}}$ o.e. or a.w.r.t. 0.68 m s ⁻¹	M1 A1	(2)
(e)	$x = a\cos\omega t = 0.2\cos\left(\sqrt{\frac{80}{7}}t\right)$	M1	
	$x = -0.1 \qquad -\frac{0.1}{0.2} = \cos\left(\sqrt{\frac{80}{7}}t\right)$	A1	
	$t = \sqrt{\frac{7}{80}} \cos^{-1} \left(-0.5 \right)$		
	$t = \sqrt{\frac{7}{80}} \times \frac{2\pi}{3} = \frac{\pi}{3} \sqrt{\frac{7}{20}}$ o.e. (accept a.w.r.t. 0.62) s	M1 A1	(4)
			(4) 15

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028443 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

